

Welcome to psutil-extra’s documentation

Process information

All of these functions take a proc argument; this can either be a psutil.Process
instance or an int representing a process ID.

	
oneshot_proc(pid)

	Similar to psutil.Process.oneshot(), when this is used as a context manager it enables
caching of values that can be retrieved by the same method for the given PID.

	Parameters

	pid (int) – The PID of the process for which caching should be enabled.

Warning

This function differs from psutil.Process.oneshot() in two important ways:

	The process information cache is thread-local. This avoids concurrent modification issues.

	The caching is done by PID, not by psutil.Process instance, and as a result the cache
will be used regardless of whether a psutil.Process or an integer PID is passed to the
underlying function. For example:

Note

Do not use this context manager unless you plan to retrieve multiple pieces of information.

As noted in the table below, some functions, when called inside a oneshot_proc()
manager, will retrieve the requested information in a way that retrieves as much additional
information as possible. While this means that the cached information can then be used later
for performance improvements, it is also very wasteful if the information is not used.

Here is a table, in the same format as psutil.Process.oneshot()’s table [https://psutil.readthedocs.io/en/latest/#psutil.Process.oneshot], that shows which methods can
be grouped together for greater efficiency:

	Linux

	macOS

	NetBSD

	OpenBSD

	DragonFlyBSD

	FreeBSD

	proc_getgroups()

	proc_getgroups()

	proc_getgroups()

	proc_getgroups()

	proc_getgroups()

	proc_getgroups() 1 3

	proc_get_umask()

	proc_getpgid() 1

	proc_getpgid() 1

	proc_getpgid() 1

	proc_getpgid() 1

	proc_getpgid() 1

	proc_get_sigmasks()

	proc_get_sigmasks()

	proc_getsid() 1

	proc_getsid() 1

	proc_getsid() 1

	proc_getsid() 1

	
	
	proc_get_sigmasks()

	proc_get_sigmasks()

	
	proc_get_sigmasks()

	
	
	
	
	proc_getrlimit() 2

	

	1(1,2,3,4,5,6,7,8,9,10)

	These functions, when called inside a oneshot_proc() context manager, will retrieve the
requested information in a different way that collects as much extra information as possible about
the process for later use.

	2

	On DragonFlyBSD, the first call to proc_getrlimit() inside a oneshot_proc() will retrieve all
of the resource limits and cache them. Further calls to proc_getrlimit() will use this cache.

	3

	On FreeBSD, calling proc_getgroups() inside a oneshot_proc() will first attempt to retrieve
the group list via a method that collects as much extra information as possible. However, this method may
truncate the returned group list. In this case, proc_getgroups() will fall back on the normal method,
which avoids truncation.

	
proc_get_umask(proc)

	Returns the umask of the given process without changing it.

On Linux <4.7, this raises an OSError with errno set to ENOTSUP
(Operation not supported).

	Parameters

	proc (int or psutil.Process) – The process to get the umask for. This can be either a psutil.Process
or an int representing a PID.

	Returns

	The given process’s current umask value.

	Return type

	int

Availability: Linux (4.7+), FreeBSD

	
proc_getgroups(proc)

	Returns a list of the given process’s supplementary groups.

Note

Currently, on Windows Subsystem for Linux 1 (not tested on WSL 2), this
function succeeds but always returns an empty list.

Note

On macOS, this function’s behavior differs from that of
os.getgroups() [https://docs.python.org/3/library/os.html#os.getgroups].
Effectively, it always behaves as if the deployment target is less than 10.5.

	Parameters

	proc (int or psutil.Process) – The process to get the supplementary group list for. This can be either a
psutil.Process or an int representing a PID.

	Returns

	A list of the given process’s current supplementary groups.

	Return type

	list[int]

Availability: Linux, macOS, FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, Solaris

	
proc_rlimit(proc, resource, new_limits=None)

	Get/set the given process’s resource limits. This behaves identically to
psutil.Process.rlimit(), except it is also implemented on some platforms
other than Linux.

Warning

On some platforms, this function may not be able to get/set the limits atomically,
or to set the soft/hard resource limits together.

Aside from the potential race conditions this creates, if this function raises
an error, one or both of the limits may have been changed before the error
occurred.

	Parameters

	
	proc (int or psutil.Process) – The process to get/set the resource limits for. This can be either a
psutil.Process or an int representing a PID.

	resource (int) – One of the resource.RLIMIT_* constants representing the resource to
get/set the limits for.

	new_limits (None or tuple[int, int]) – If given and not None, this should be a (soft, hard) tuple representing
the new limits to set, as with resource.setrlimit().

	Returns

	A (soft, hard) tuple representing the previous resource limits.

	Return type

	tuple[int, int]

Availability: Linux, FreeBSD, NetBSD

	
proc_getrlimit(proc, resource)

	This behaves identically to proc_rlimit(), except that it only supports getting
resource limits. This allows it to be implemented on platforms that support getting
resource limits but not setting them.

	Parameters

	
	proc (int or psutil.Process) – The process to get the resource limits for. This can be either a
psutil.Process or an int representing a PID.

	resource (int) – One of the resource.RLIMIT_* constants representing the resource to
get the current limits for.

	Returns

	A (soft, hard) tuple representing the current resource limits.

	Return type

	tuple[int, int]

Availability: Linux, FreeBSD, NetBSD, DragonFlyBSD

	
proc_get_sigmasks(proc, resource)

	Get the signal masks of the given process. Returns a dataclass containing
several fields:

	pending (not on macOS): The set of pending signals for the process.

	blocked (not on macOS): The set of signals that the process has blocked.

	ignored: The set of signals that the process has ignored.

	caught: The set of signals that the process has registered signal
handlers for.

	process_pending (Linux): The set of pending signals for the entire process, not
just the specified thread.

Note

Currently, on Windows Subsystem for Linux 1 (not tested on WSL 2), this
function succeeds but always returns empty sets for all fields.

	Parameters

	proc (int or psutil.Process) – The process to get the resource limits for. This can be either a
psutil.Process or an int representing a PID.

	Returns

	A dataclass containing the fields listed above

Availability: Linux, macOS, FreeBSD, OpenBSD, NetBSD

	
proc_getpgid(proc)

	Get the process group ID of the given process.

On platforms where os.getpgid() returns EPERM for processes in other sessions,
this function may still be able to get the process group ID for these processes.

	Parameters

	proc (int or psutil.Process) – The process to get the process group ID for. This can be either a
psutil.Process or an int representing a PID.

	Returns

	The process group ID of the given process

	Return type

	int

Availability: Linux, macOS, FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, Solaris

	
proc_getsid(proc)

	Get the session ID of the given process.

On platforms where os.getsid() returns EPERM for processes in other sessions,
this function may still be able to get the session ID for these processes.

	Parameters

	proc (int or psutil.Process) – The process to get the session ID for. This can be either a
psutil.Process or an int representing a PID.

	Returns

	The session ID of the given process

	Return type

	int

Availability: Linux, macOS, FreeBSD, OpenBSD, NetBSD, DragonFlyBSD, Solaris

Error handling

Errors raised will vary slightly between functions and across platforms (for example,
proc_rlimit() and proc_getrlimit() raise ValueError for invalid resource
values). However, here is the general rule:

psutil.Error subclasses (psutil.NoSuchProcess and psutil.AccessDenied) are
raised if there is one that directly corresponds to the error that occured. For most
other cases, an OSError is raised.

Indices and tables

	Index

	Module Index

	Search Page

Index

 O
 | P

O

 	
 	oneshot_proc() (built-in function)

P

 	
 	proc_get_sigmasks() (built-in function)

 	proc_get_umask() (built-in function)

 	proc_getgroups() (built-in function)

 	
 	proc_getpgid() (built-in function)

 	proc_getrlimit() (built-in function)

 	proc_getsid() (built-in function)

 	proc_rlimit() (built-in function)

 nav.xhtml

 Table of Contents

 		
 Welcome to psutil-extra’s documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

